Abstract

SummaryThis paper proposes improving the solve time of a bootstrap algebraic multigrid (AMG) designed previously by the authors. This is achieved by incorporating the information, a set of algebraically smooth vectors, generated by the bootstrap algorithm, in a single hierarchy by using sufficiently large aggregates, and these aggregates are compositions of aggregates already built throughout the bootstrap algorithm. The modified AMG method has good convergence properties and shows significant reduction in both memory and solve time. These savings with respect to the original bootstrap AMG are illustrated on some difficult (for standard AMG) linear systems arising from discretization of scalar and vector function elliptic partial differential equations in both 2D and 3D.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.