Abstract

An efficient quantum cutting mechanism was observed in a system comprising Tb3+−Yb3+ codoped silica hafnia glass and glass-ceramic. Thin films were deposited on silicon substrates using the dip-coating method and photoluminescence dynamics revealed a quantum efficiency of up to 179% at 980 nm. These films can efficiently convert light to lower energy levels and can easily be integrated into silicon-based solar cells, increasing their photoelectric conversion efficiency at a low cost. This was demonstrated through electrical characterization, which revealed a boost in solar cell efficiency when the film was utilized. It was specifically noted that the efficiency of Si solar cells increased by 10.79% and 10.78% when covered with 70SiO2−30HfO2−3Tb3+−12Yb3+ glass and glass ceramic, respectively. Furthermore, an evaluation of the additional external quantum efficiency, derived from this optical system, revealed an improvement ranging from 2.64% to 3.44%. This finding highlights the enhanced light conversion capabilities of the quantum cutting mechanism within the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call