Abstract

To meet the food demands of a growing population, the maize production systems deployed by smallholders in China have tended towards extremely intensive planting and excessive use of fertilizers, which have caused serious environmental impacts. This study investigated the balance between the maize yield and nitrogen (N) input in the North China Plain (NCP), which is one of the most important grain-producing region in China. Our study compared yield simulations generated by the DSSAT-CERES-Maize model with actual data from a number of multi-site field experiments and an extensive household surveys encompassing 1671 farmers. The smallholders' maize cultivars, plant population, and amount of N input on the crop yield and how these affects the economic benefits were analyzed. The results showed that the average traditional farming methods' yield was 72% of the attainable yield, which means that farmers have ample room to improve their yields. We also found that the maize yields varied widely between farmers, and that most of them applied excessive amounts of N but failing to achieve an optimal yield due to poor fertilization management techniques. The study found that the economic benefits achieved by the farmers were low, but after deploying high-yield (HY) methods, the yield was increased by 34.9% and the economic benefits by 14.4%. The greenhouse gas (GHG) emissions associated with the traditional farming methods were high and could potentially be reduced by 48.6%. All in all, farmers should be given guidance on how to appropriately increase the plant population, reduce the input of N fertilizer, and optimize farmland management measures, so that China can achieve intensive but sustainable agricultural production at a lower environmental cost. It was concluded that there are still numerous biological and abiotic factors that restrict production increases by smallholders. These factors vary from region to region and require further investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.