Abstract

AbstractTo improve estimates of remote contributions of dust to fine particulate matter (PM2.5) in the western United States, new dust particle size distributions (PSDs) based upon scale‐invariant fragmentation theory (Kok_PSD) with constraints from in situ measurements (IMP_PSD) are implemented in a chemical transport model (GEOS‐Chem). Compared to initial simulations, this leads to reductions in the mass of emitted dust particles with radii <1.8 µm by 40%–60%. Consequently, the root‐mean‐square error in simulated fine dust concentrations compared to springtime surface observations in the western United States is reduced by 67%–81%. The ratio of simulated fine to coarse PM mass is also improved, which is not achievable by reductions in total dust emissions. The IMP_PSD best represents the PSD of dust transported from remote sources and reduces modeled PM2.5 concentrations up to 5 µg/m3 over the western United States, which is important when considering sources contributing to nonattainment of air quality standards.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call