Abstract

Wide Single Instruction, Multiple Thread (SIMT) architectures often require a static allocation of thread groups that are executed in lockstep throughout the entire application kernel. Individual thread branching is supported by executing all control flow paths for threads in a thread group and only committing the results of threads on the current control path. While convergence algorithms are used to maximize processor efficiency during branching operations, applications requiring complex control flow often result in low processor efficiency due to the length and quantity of control paths. Global rendering algorithms are an example of a class of application that can be accelerated using a large number of independent parallel threads that each require complex control flow, resulting in comparatively low efficiency on SIMT processors. To improve processor utilization for global rendering algorithms, we introduce a SIMT architecture that allows for threads to be created dynamically at runtime. Large application kernels are broken down into smaller code blocks we call μ-kernels that dynamically created threads can execute. These runtime μkernels allow for the removal of branching statements that would cause divergence within a thread group, and result in new threads being created and grouped with threads beginning execution of the same μ-kernel. In our evaluation of SIMT processor efficiency for a global rendering algorithms, dynamic μ-kernels improved processor performance by an average of 1.4x.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.