Abstract
A genetic algorithm is proposed for ordering the input patterns during training for simplified fuzzy ARTMAP (SFA) classifier to improve the individual identification classification performance using brain fingerprints. The results indicate improved classification performance as compared to the existing methods for pattern ordering, namely voting strategy and min-max. As the ordering method is general, it could be used with any dataset to obtain improved classification performance when SFA is used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.