Abstract

On a Silicon Photonics integrated circuit, information is carried by the light that propagates within silicon waveguides. The waveguide’s geometry determines the functionality. The curvilinearity of Silicon Photonics designs would raise challenges for the manufacturability. However, so far Silicon Photonics design dimensions are considered relaxed by the industry. Also, the type of shapes that are drawn would generally use rather simple geometry objects. This allows the usage of conventional techniques in the different phases of the manufacturability. Recently has emerged a type of Silicon Photonics design, referred to as “inverse design”. This new technique produces designs that are very exotic and quite unpredictable. It shows complex geometries which critical dimensions require innovative Resolution Enhancement Techniques at the different stages of the Optical Proximity Correction flow. The success of these “inverse designs” relies on a very accurate pattern fidelity. This presentation will demonstrate a flow going from modelling, to OPC and metrology and verification of the manufactured wafer data. This flow permits to tackle the challenges brought newly to the Silicon Photonics environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call