Abstract

The effect of hot extrusion speed on the microstructure and mechanical properties of MgY1.06Zn0.76Al0.42 (at%) alloy strengthened by the novel long-period stacking ordered (LPSO) phase was systematically investigated. Increase in the speed of extrusion accelerated dynamic recrystallization of α-Mg via particle-stimulated nucleation and grain growth in the alloy. The intensive recrystallization and grain growth events weakened the conventional basal texture and Hall-Petch strengthening in the alloy which led to significant improvement in its failure strain from 4.9% to 19.6%. The critical strengthening contribution from LPSO phase known for attributing high strength to the alloy was observed to be greatly undermined by the parallel competition from texture weakening and the adverse Hall-Petch effect when the alloy was extruded at higher speed. Absence of work hardening interestingly observed in the alloy extruded at lower speed was discussed in terms of its ultra-fine grained microstructure which promoted the condition of steady-state defect density in the alloy; where dislocation annihilation balances out the generation of new dislocations during plastic deformation. One approach to improve work hardening response of the alloy to prevent unstable deformation and abrupt failure in service is to increase the grain diameter in the alloy by judiciously increasing the extrusion speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call