Abstract

Through recent technology advances in the field of wireless energy transmission wireless rechargeable sensor networks have emerged. In this new paradigm for wireless sensor networks a mobile entity called mobile charger (MC) traverses the network and replenishes the dissipated energy of sensors. In this work we first provide a formal definition of the charging dispatch decision problem and prove its computational hardness. We then investigate how to optimise the trade-offs of several critical aspects of the charging process. In the light of these optimisations, we study the impact of the charging process to the network lifetime for three characteristic underlying routing protocols. Finally, we propose a mobile charging protocol that locally adapts the circular trajectory of the MC to the energy dissipation rate of each sub-region of the network. We compare this protocol against several MC trajectories by a detailed experimental evaluation. The derived findings demonstrate significant performance gains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call