Abstract
We developed a fully automated artificial intelligence(AI)AI-based-based method for detecting suspected lymph node metastases in prostate-specific membrane antigen (PSMA)(PSMA) positron emission tomography-computed tomography (PET-CT)(PET-CT) images of prostate cancer patients by using data augmentation that adds synthetic lymph node metastases to the images to expand the training set. Synthetic data were derived from original training images to which new synthetic lymph node metastases were added. Thus, the original training set from a previous study (n = 420) was expanded by one synthetic image for every original image (n = 840), which was used to train an AI model. The performance of the AI model was compared to that of nuclear medicine physicians and a previously developed AI model. The human readers were alternately used as a reference and compared to either another reading or AI model. The new AI model had an average sensitivity of 84% for detecting lymph node metastases compared with 78% for human readings. Our previously developed AI method without synthetic data had an average sensitivity of 79%. The number of false positive lesions were slightly higher for the new AI model (average 3.3 instances per patient) compared to human readings and the previous AI model (average 2.8 instances per patient), while the number of false negative lesions was lower. Creating synthetic lymph node metastases, as a form of data augmentation, on [18F]PSMA-1007F]PSMA-1007 PETPET-CT-CT images improved the sensitivity of an AI model for detecting suspected lymph node metastases. However, the number of false positive lesions increased somewhat.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.