Abstract

Despite its status as the preferred method for routine enantiopurity analysis in pharmaceutical research, supercritical fluid chromatography (SFC) has historically been unsuited for the accurate and precise measurements required for release testing of active pharmaceutical ingredients (APIs) under current good manufacturing processes (cGMPs). Insufficient signal to noise, as compared to HPLC, has heretofore been the major limitation of the chiral SFC approach. We herein describe an investigation into the fundamental limitations and sources of noise in the SFC approach, identifying thermal, electronic, and mechanical sources of noise within the flow cell as key parameters contributing to reduced sensitivity. A variety of instrument modifications are explored, ultimately leading to the development of a new and improved flow cell and other instrument modifications that allow suitable sensitivity and accuracy to carry out GMP release testing for enantiopurity analysis using SFC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.