Abstract

Surface-enhanced Raman scattering (SERS) technology has been widely recognized for its remarkable sensitivity in biochip development. This study presents a novel sandwich immunoassay that synergizes SERS with magnetoplasmonic nanoparticles (MPNs) to improve sensitivity. By taking advantage of the unique magnetism of these nanoparticles, we further enhance the detection sensitivity of SERS biochips through the applied magnetic field. Despite the high sensitivity, practical applications of SERS biochips are often limited by the issues of stability and reproducibility. In this study, we introduced a straightforward statistical method known as "Gaussian binning", which involves initially binning the two-dimensional Raman mapping data and subsequently applying Gaussian fitting. This approach enables a more consistent and reliable interpretation of data by reducing the variability inherent in Raman signal measurements. Based on our method, the biochip, targeting for C-reactive protein (CRP), achieves an impressive detection limit of 5.96 fg/mL, and with the application of a 3700 G magnetic field, it further enhances the detection limit by 5.7 times, reaching 1.05 fg/mL. Furthermore, this highly sensitive and magnetically tunable SERS biochip is easily designed for versatile adaptability, enabling the detection of other proteins. We believe that this innovation holds promise in enhancing the clinical applicability of SERS biochips.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call