Abstract

The high computing power of graphics processing units (GPUs) makes them attractive for safety-critical applications, where reliability is a major concern. This article uses an approximate computing perspective to relax application accuracy in order to improve the selective fault tolerance techniques. Our approach first assesses the vulnerability of a Kepler GPU to the transient effects through a neutron beam experiment. Then, it performs a fault injection campaign to identify the most critical registers and relax the result accuracy. Finally, it uses the acquired data to improve the selective fault tolerance techniques in terms of occupation and performance. The results show that it was possible to improve the GPU register file's reliability on average by 71.6% by relaxing the application accuracy and, when compared with the selective hardening techniques, it was able to reduce the replicated registers by an average of 41.4%, while maintaining 100% fault coverage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.