Abstract

FPGAs are gaining favor among researchers in fields including artificial intelligence and big data due to their configurability and high level of parallelism. As the packing methods indisputably affect the implementation performance of FPGA chips, packing techniques play an important role in the design automation flow of FPGAs. In this paper, we propose a quantitative rule for packing priority of neural network circuits, and optimize the traditional seed-based packing methods with special primitives. The experiment result indicates that the proposed packing method achieves an average decrease of 8.45% in critical path delay compared to the VTR8.0 on Koios deep learning benchmarks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.