Abstract

The problem of obtaining relevant results in web searching has been tackled with several approaches. Although very effective techniques are currently used by the most popular search engines when no a priori knowledge on the user's desires beside the search keywords is available, in different settings it is conceivable to design search methods that operate on a thematic database of web pages that refer to a common body of knowledge or to specific sets of users. We have considered such premises to design and develop a search method that deploys data mining and optimization techniques to provide a more significant and restricted set of pages as the final result of a user search. We adopt a vectorization method based on search context and user profile to apply clustering techniques that are then refined by a specially designed genetic algorithm. In this paper we describe the method, its implementation, the algorithms applied, and discuss some experiments that has been run on test sets of web pages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.