Abstract
Learning from incidents (LFI) is a process to seek, analyse, and disseminate the severity and causes of incidents, and take corrective measures to prevent the recurrence of similar events. However, the effects of LFI on the learner's safety performance remain unexplored. This study aimed to identify the effects of the major LFI factors on the safety performance of workers. A questionnaire survey was administered among 210 construction workers in China. A factor analysis was conducted to reveal the underlying LFI factors. A stepwise multiple linear regression was performed to analyse the relationship between the underlying LFI factors and safety performance. A Bayesian Network (BN) was further modelled to identify the probabilistic relational network between the underlying LFI factors and safety performance. The results of BN modelling showed that all the underlying factors were important to improve the safety performance of construction workers. Additionally, sensitivity analysis revealed that the two underlying factors-information sharing and utilization and management commitment-had the largest effects on improving workers' safety performance. The proposed BN also helped find out the most efficient strategy to improve workers' safety performance. This research may serve as a useful guide for better implementation of LFI practices in the construction sector.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Research and Public Health
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.