Abstract

Rolling bearing plays an important role in rotating machinery and its working condition directly affects the equipment efficiency. While dozens of methods have been proposed for real-time bearing fault diagnosis and monitoring, the fault classification accuracy of existing algorithms is still not satisfactory. This work presents a novel algorithm fusion model based on principal component analysis and Dempster-Shafer evidence theory for rolling bearing fault diagnosis. It combines the advantages of the learning vector quantization (LVQ) neural network model and the decision tree model. Experiments under three different spinning bearing speeds and two different crack sizes show that our fusion model has better performance and higher accuracy than either of the base classification models for rolling bearing fault diagnosis, which is achieved via synergic prediction from both types of models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.