Abstract

Ridesourcing services play a crucial role in metropolitan transportation systems and aggravate urban traffic congestion and air pollution. Ridesplitting is one possible way to reduce these adverse effects and improve the transport efficiency, especially during rush hours. This paper aims to explore the potential of ridesplitting during peak hours using empirical ridesourcing data provided by DiDi Chuxing, which contains complete datasets of ridesourcing orders in the city of Chengdu, China. A ridesplitting trip identification algorithm based on a shareability network is developed to quantify the potential of ridesplitting. Then, we evaluate the gap between the potential and actual scales of ridesplitting. The results show that the percentage of potential cost savings can reach 18.47% with an average delay of 4.76 min, whereas the actual percentage is 1.22% with an average delay of 9.86 min. The percentage of shared trips can be increased from 7.85% to 90.69%, and the percentage of time savings can reach 25.75% from 2.38%. This is the first investigation of the gap between the actual scale and the potential of ridesplitting on a city scale. The proposed ridesplitting algorithm can not only bring benefits on a city level but also take passenger delays into consideration. The quantitative benefits could encourage transportation management agencies and transportation network companies to develop sensible policies to improve the existing ridesplitting services.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call