Abstract
Cognitive Radio Networks enable a higher number of users to access the spectrum of frequency simultaneously. This access is possible due to the implementation of dynamic spectrum allocation algorithms. In this context, one of the main algorithms found in the literature is the reinforcement learning based approach called Q-Learning. Although been widely applied, this algorithm does not take into account accurate information about the behavior of users neither the channel propagation conditions. In this sense, we propose three improvements to the dynamic spectrum allocation algorithms based on reinforcement learning for cognitive sensor networks. Simulation results show that all the proposed algorithms allow allocating channels with up to 6dB better quality and 4% higher efficiency than Q-Learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.