Abstract
Augmented reality (AR) by analyzing the characteristics of the scene, the computer-generated geometric information which can be added to the real environment in the way of visual fusion, reinforces the perception of the world. Three-dimensional (3D) registration is one of the core issues of in AR. The key issue is to estimate the visual sensor’s posture in the 3D environment and figure out the objects in the scene. Recently, computer vision has made significant progress, but the registration based on natural feature points in 3D space for AR system is still a severe problem. There is the difficulty of working out the mobile camera’s posture in the 3D scene precisely due to the unstable factors, such as the image noise, changing light and the complex background pattern. Therefore, to design a stable, reliable and efficient scene recognition algorithm is still very challenging work. In this paper, we propose an algorithm which combines Visual Simultaneous Localization and Mapping (SLAM) and Deep Convolutional Neural Networks (DCNNS) to boost the performance of AR registration. Semantic segmentation is a dense prediction task which aims to predict categories for each pixel in an image when applying to AR registration, and it will be able to narrow the searching range of the feature point between the two frames thus enhancing the stability of the system. Comparative experiments in this paper show that the semantic scene information will bring a revolutionary breakthrough to the AR interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Pattern Recognition and Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.