Abstract

Abstract Although large-scale atmospheric reanalyses are now providing physical, realistic fields for many variables, precipitation remains problematic. As shown in recent studies, using a regional model to downscale the global reanalysis only marginally alleviates the precipitation simulation problems. For this reason, later-generation analyses, including the recent National Centers for Environmental Prediction regional reanalysis, are using precipitation assimilation as a methodology to provide superior precipitation fields. This methodology can also be applied to regional model simulations to substantially improve the precipitation fields downscaled from global reanalysis. As an illustration of the regional model precipitation assimilation impact, the authors describe here an extended-range simulation comparison over South America. The numerical experiments cover the beginning of the Large-Scale Biosphere–Atmosphere wet season campaign of January 1999. Evaluations using radiosonde datasets obtained during this campaign are provided as well. As will be shown, rain-rate assimilation not only increases the regional model precipitation simulation skill but also provides improvements in other fields influenced by the precipitation. Because of the potential impact on land surface features, the authors believe they will ultimately be able to show improvements in monthly to seasonal forecasts when precipitation assimilation is used to generate more accurate land surface initial conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call