Abstract

Algorithms for current automatic train operation (ATO) focus mainly on reducing the mechanical energy of motion for a single train within an existing timetable. However, the reuse of regenerative energy is another factor that contributes to energy consumption and conservation in multitrain networks. To improve regenerative energy receptivity and energy savings in a bidirectional metro transit network, this study formulated a coordinated train control algorithm that was based on genetic algorithm techniques. The energy saving potential of different station departure time intervals between two opposing trains (synchronization time) was tested. Simulation on the Visual C++ platform demonstrated that the algorithm could provide an optimal train speed profile with better energy performance while also satisfying operational constraints. Different synchronization times have different optimization ratios. This research was another step to facilitate the development of an ATO control algorithm that considers overall energy consumption. Increased knowledge of the influence of synchronization time at stations on energy consumption in regenerative multitrain networks will also aid in the design of more energy-efficient timetables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.