Abstract
Intracranial electrodes are sometimes implanted in patients with refractory epilepsy to identify epileptic foci and propagation. Maximal recording of EEG activity from regions suspected of seizure generation is paramount. However, the location of individual contacts cannot be considered with current manual planning approaches. We propose and validate a procedure for optimizing intracranial electrode implantation planning that maximizes the recording volume, while constraining trajectories to safe paths. Retrospective data from 20 patients with epilepsy that had electrodes implanted in the mesial temporal lobes were studied. Clinical imaging data (CT/A and T1w MRI) were automatically segmented to obtain targets and structures to avoid. These data were used as input to the optimization procedure. Each electrode was modeled to assess risk, while individual contacts were modeled to estimate their recording capability. Ordered lists of trajectories per target were obtained. Global optimization generated the best set of electrodes. The procedure was integrated into a neuronavigation system. Trajectories planned automatically covered statistically significant larger target volumes than manual plans [Formula: see text]. Median volume coverage was [Formula: see text] for automatic plans versus [Formula: see text] for manual plans. Furthermore, automatic plans remained at statistically significant safer distance to vessels [Formula: see text] and sulci [Formula: see text]. Surgeon's scores of the optimized electrode sets indicated that 95% of the automatic trajectories would be likely considered for use in a clinical setting. This study suggests that automatic electrode planning for epilepsy provides safe trajectories and increases the amount of information obtained from the intracranial investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computer Assisted Radiology and Surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.