Abstract

A Chinese hamster ovary (CHO) cell line producing recombinant human bone morphogenetic protein-4 (rhBMP-4) (CHO-BMP-4), which expresses essential components of BMP signal transduction, underwent autocrine BMP-4 signaling. RNA seq analysis on CHO host cells (DG44) treated with rhBMP-4 (20 µg/mL) suggested that rhBMP-4 induced signaling in CHO cells could be a critical factor in limiting rhBMP-4 production and should be removed to improve rhBMP-4 production in recombinant CHO (rCHO) cells. The inhibition of autocrine BMP signaling in CHO-BMP-4 cells by the addition of LDN-193189, a chemical inhibitor of BMP receptor type I, significantly increased the mRNA expression levels of rhBMP-4. To establish BMP signaling-free host cells, a BMP receptor, the BMPRIA or BMPRII gene in DG44 cells, was knocked out using CRISPR/Cas9 gene-editing technology. Using three different knockout (KO) host cell lines as well as a DG44 wild-type (wt) cell line, rCHO cell clones producing rhBMP-4 were generated by a stepwise selection with increasing methotrexate concentrations. KO-derived clones showed a significantly higher maximum rhBMP-4 concentration than wt-derived clones in both batch and fed-batch cultures. Unlike wt-derived clones, KO-derived cell clones were able to produce higher amounts of hBMP-4 transcripts and proteins in the stationary phase of growth and did not experience growth inhibition induced by rhBMP-4. The mean maximum rhBMP-4 concentration of KO host-derived clones was approximately 2.4-fold higher than that of wt-derived clones (P < 0.05). Taken together, the disruption of BMP signaling in CHO cells by knocking out the BMP receptor significantly improved rhBMP-4 production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.