Abstract
Graphical User Interfaces (GUIs) are amongst the most common user interfaces, enabling interactions with applications through mouse movements and key presses. Tools for automated testing of programs through their GUI exist, however they usually rely on operating system or framework specific knowledge to interact with an application. Due to frequent operating system updates, which can remove required information, and a large variety of different GUI frameworks using unique underlying data structures, such tools rapidly become obsolete, Consequently, for an automated GUI test generation tool, supporting many frameworks and operating systems is impractical. We propose a technique for improving GUI testing by automatically identifying GUI widgets in screen shots using machine learning techniques. As training data, we generate randomized GUIs to automatically extract widget information. The resulting model provides guidance to GUI testing tools in environments not currently supported by deriving GUI widget information from screen shots only. In our experiments, we found that identifying GUI widgets in screen shots and using this information to guide random testing achieved a significantly higher branch coverage in 18 of 20 applications, with an average increase of 42.5% when compared to conventional random testing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.