Abstract

Phosphate-solubilizing bacteria play a key role in increasing plant growth as potential suppliers of soluble phosphorus and have great potential for the remediation of heavy metal-polluted soils. However, the soil and microbiological mechanisms by which phosphate-solubilizing bacteria prevent heavy metal absorption in radish have not been adequately studied. Here, the mechanisms of phosphorus solubilization, Cd and Pb immobilization, and the inhibition of heavy metal absorption by phosphate-solubilizing bacteria were studied in radish through solution adsorption and pot experiments. Two phosphate-solubilizing bacteria with high Cd and Pb removal rates (46.9–97.12 %), Klebsiella sp. M2 and Kluyvera sp. M8, were isolated. The soluble phosphorus content released by strains M2 and M8 was 265–277 mg L−1, achieved by secreting oxalic acid, ascorbic acid, citric acid, and succinic acid in an inorganic phosphorus medium containing 3 mg L−1 Cd and 5 mg L−1 Pb. Furthermore, these two functional strains induced the formation of Pb2(PO4)2, Cd(PO3)2, Fe2Pb3(PO4)2, CdS, and PbS precipitates that immobilized Cd and Pb in the solution. In general, strains M2 and M8 inhibited the absorption of Cd and Pb by radish by the following mechanisms: i) bacterial cell wall adsorption, ii) induction of Pb2(PO4)2, Cd(PO3)2, Fe2Pb3(PO4)2, CdS, and PbS precipitation in the solution/soil, iii) increases in the Ca2P and FeP contents in the radish rhizosphere, and iv) the promotion of bacterial community enrichment toward phosphorus-solubilizing and plant growth-promoting properties (Ramlibacter, Enterobacter, Bacillus, Gemmatimonas, and Lysinibacillusin) in the radish rhizosphere. These results provide bacterial resources and technical approaches to heavy metal pollution amelioration and efficient phosphorus fertilizer use in farmland.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call