Abstract
Geometric phase retarders-such as q-plates and S-waveplates-have found wide applications due to simplicity of operational principles and flexibility for the generation of azimuthally symmetric polarization states and optical vortices. Ellipticity of the polarization vector and phase of the generated beam strongly depend on the retardation of the plate. Real devices usually have retardation value slightly different than the nominated one. Previously unattended perturbation of the retardation leads to asymmetry in intensity distribution and variation of ellipticity of the local polarization vector of the generated beam. We elucidate that controlled and intentionally driven azimuthally variable, oscillating perturbation of the retardation reveals the possibility to avoid distortions in the generated beam and leads to the recovery of the symmetrically distributed intensity and polarization (with zero ellipticity) of the beam. Described recovery of the desired polarization state could find application for generation of the high purity beam with azimuthally symmetric polarization, in which the local polarization ellipse has zero ellipticity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.