Abstract

Computational protein-ligand docking is of great importance in drug discovery and design. Conformational changes greatly affect the results of protein-ligand docking, especially when water molecules take part in mediating protein ligand interactions or when large conformational changes are observed in the receptor backbone interface. We have developed an improved protocol, SWRosettaLigand, based on the RosettaLigand protocol. This approach incorporates the flexibility of interfacial water molecules and modeling of the interface of the receptor into the original RosettaLigand. In a coarse sampling step, SWRosettaLigand pre-optimizes the initial position of the water molecules, docks the ligand to the receptor with explicit water molecules, and minimizes the predicted structure with water molecules. The receptor backbone interface is treated as a loop and perturbed and refined by kinematic closure, or cyclic coordinate descent algorithm, with the presence of the ligand. In two cross-docking test sets, it was identified that for 8 out of 14, and 16 out of 22, test instances, the top-ranked structures by SWRosettaLigand achieved better accuracy than other protocols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.