Abstract
Progress tests give a continuous measure of a student's growth in knowledge. However, the result at each test instance is subject to measurement error from a variety of sources. Previous tests contain useful information that might be used to reduce this error. A Bayesian statistical approach to using this prior information was investigated. We first developed a Bayesian model that used the result from only one preceding test to update both the current estimated test score and its standard error of measurement (SEM). This was then extended to include results from all previous tests. The Bayesian model leads to an exponentially weighted combination of test scores. The results show smoothing of test scores when all previous tests are included in the model. The effective sample size is doubled, leading to a 30% reduction in measurement error. A Bayesian approach can give improved score estimates and smaller SEMs. The method is simple to use with large cohorts of students and frequent tests. The smoothing of raw scores should give greater consistency in rank ordering of students and hence should better identify both high-performing students and those in need of remediation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.