Abstract
Two-liquid-phase reaction media have long been used in bioconversions to supply or remove hydrophobic organic reaction substrates and products to reduce inhibitory and toxic effects on biocatalysts. In case of the terminal oxyfunctionalization of linear alkanes by the AlkBGT monooxygenase the excess alkane substrate is often used as a second phase to extract the alcohol, aldehyde, and acid products. However, the selection of other carrier phases or surfactants is complex due to a large number of parameters that are involved, such as biocompatibility, substrate bioavailability, and product extraction selectivity. This study combines systematic high-throughput screening with chemometrics to correlate physicochemical parameters of a range of cosolvents to product specificity and yield using a multivariate regression model. Partial least-squares regression shows that the defining factor for product specificity is the solubility properties of the reaction substrate and product in the cosolvent, as measured by Hansen solubility parameters. Thus the polarity of cosolvents determines the accumulation of either alcohol or acid products. Whereas usually the acid product accumulates during the reaction, by choosing a more polar cosolvent the 1-alcohol product can be accumulated. Especially with Tergitol as a cosolvent, a 3.2-fold improvement in the 1-octanol yield to 18.3 mmol L-1 is achieved relative to the control reaction without cosolvents.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.