Abstract

This paper investigates the problem reduction heuristic for the Multidimensional Knapsack Problem (MKP). The MKP formulation is first strengthened by the Global Lifted Cover Inequalities (GLCI) using the cutting plane approach. The dynamic core problem heuristic is then applied to find good solutions. The GLCI is described in the general lifting framework and several variants are introduced. A Two-level Core problem Heuristic is also proposed to tackle large instances. Computational experiments were carried out on classic benchmark problems to demonstrate the effectiveness of this new method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.