Abstract
BackgroundOperating rooms (ORs) are one of the costliest units in a hospital, therefore the cumulative consequences of any kind of inefficiency in OR management lead to a significant loss of revenue for the hospital, staff dissatisfaction, and patient care disruption. One of the possible solutions to improving OR efficiency is knowing a reliable estimate of the duration of operations. The literature suggests that the current methods used in hospitals, e.g., a surgeon’s estimate for the given surgery or taking the average of only five previous records of the same procedure, have room for improvement.MethodsWe used over 4 years of elective surgery records (n = 52,171) from one of the major metropolitan hospitals in Australia. We developed robust Machine Learning (ML) approaches to provide a more accurate prediction of operation duration, especially in the absence of surgeon’s estimation. Individual patient characteristics and historic surgery information attributed to medical records were used to train predictive models. A wide range of algorithms such as Extreme Gradient Boosting (XGBoost) and Random Forest (RF) were tested for predicting operation duration.ResultsThe results show that the XGBoost model provided statistically significantly less error than other compared ML models. The XGBoost model also reduced the total absolute error by 6854 min (i.e., about 114 h) compared to the current hospital methods.ConclusionThe results indicate the potential of using ML methods for reaching a more accurate estimation of operation duration compared to current methods used in the hospital. In addition, using a set of realistic features in the ML models that are available at the point of OR scheduling enabled the potential deployment of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.