Abstract

Outdoor aerosols experience environmental changes as they are transported indoors, including outdoor-to-indoor temperature and mass-loading gradients, which can reduce or enhance their indoor concentrations due to repartitioning driven by changes in thermodynamic equilibrium states. However, the complexity required to model repartitioning typically hinders its inclusion in studies predicting indoor exposure to ambient aerosols. To facilitate exposure predictions, this work used an explicit thermodynamic indoor aerosol model to simulate outdoor-to-indoor aerosol repartitioning typical for residential and office buildings across the 16 U.S. climate zones over an annual time horizon. Results demonstrate that neglecting repartitioning when predicting indoor concentrations can produce errors of up to 80-100% for hydrocarbon-like organic aerosol, 40-60% for total organic aerosol, 400% for ammonium nitrate, and 60% (typically 3 μg/m3) for the total PM2.5 aerosol. Underpredictions were more likely for buildings in hotter than colder regions, and for residences than offices, since both cooler indoor air and more meaningful residential organic aerosol concentrations encourage condensation of semivolatile organics. Furthermore, a method for computing correction factors to more easily account for thermodynamic repartitioning is provided. Applying these correction factors to mechanical-only aerosol predictions significantly reduced errors to <0.5 μg/m3 for the total indoor PM2.5 while bypassing explicit thermodynamic simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.