Abstract

In experiments, it is usually difficult to accurately determine simulation input parameters such as heat source parameters, material properties at high temperature, etc. The uncertainty of such input parameters is responsible for the large error of thermal simulation for weld-based additive manufacturing. In this paper, a new approach is presented to calibrate uncertain input parameters. The approach is based on the solution of the inverse heat conduction problem of small-scale five-layer deposition and the application of the infrared (IR) imaging technique. The calibration of heat source parameters involves a multivariate optimization search using the pattern search method, whereas the calibration of the combined radiation and convection model includes a number of one-dimensional searches using the Fibonacci search method. Based on an in-depth analysis of IR images, thermal characteristics such as mean layer temperature and cooling rate are selected as the comparison results and included in cost functions. Lastly, the validity of the approach is demonstrated by a simulation case of 15-layer deposition with calibrated input parameters. The comparison between the simulated and experimental results verifies the improved prediction accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.