Abstract

To increase the accuracy for the prediction of cooling load demand, this work presents an EMD (empirical mode decomposition)-PSR (phase space reconstruction) based RBFNN (radial basis function neural networks) method. Firstly, analyzed the chaotic nature of the real cooling load demand, transformed the non-stationary cooling load historical data into several stationary intrinsic mode functions (IMFs) by using EMD. Secondly, compared the RBFNN prediction accuracies of each IMFs and proposed an IMF combining scheme that is combine the lower-frequency components (called IMF4-IMF6 combined) while keep the higher frequency component (IMF1, IMF2, IMF3) and the residual unchanged. Thirdly, reconstruct phase space for each combined components separately, process the highest frequency component (IMF1) by differential method and predict with RBFNN in the reconstructed phase spaces. Real cooling load data of a centralized ice storage cooling systems in Guangzhou are used for simulation. The results show that the proposed hybrid method outperforms the traditional methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.