Abstract
This paper investigates the computationally efficient parameter estimation of polynomial phase signals embedded in noise. Many authors have previously proposed multilinear analysis methods which operate on uniformly spaced samples of the signal. Such methods include the higher-order ambiguity functions (HAFs), the Polynomial Wigner-Ville distributions (PWVDs) and the higher-order phase (HP) functions. This paper investigates the use of multilinear methods which operate on nonuniformly spaced signal samples. It is seen that the relaxation of the requirement to use uniformly spaced samples in the analysis can lead to significant performance improvements. A theoretical analysis and simulations are presented in support of these claims.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.