Abstract
Flexible and lead-free piezoelectric nanocomposites were synthesized with BaTiO3 nanowires (filler) and poly(vinylidene fluoride) (PVDF) (matrix), and the piezoelectric performances of the composites were systematically studied by varying the aspect ratio (AR) and volume fraction of the nanowire and poling time. BaTiO3 nanowires with AR of 18 were synthesized and incorporated into PVDF to improve the piezoelectric performance of the composites. It was found that high AR significantly increased the dielectric constant up to 64, which is over 800% improvement compared to those from the composites containing spheroid shape BaTiO3 nanoparticles. In addition, the dielectric constant and piezoelectric coefficient were also enhanced by increasing the concentration of BaTiO3 nanowires. The piezoelectric coefficient with 50-vol% BaTiO3 nanowires embedded in PVDF displayed 61 pC/N, which is much higher than nanocomposites with spheroid shape BaTiO3 nanoparticles as well as comparable to, if not better, other nanoparticle-filled polymer composites. Our results suggest that it is possible to fabricate nanocomposites with proper mechanical and piezoelectric properties by utilizing proper AR fillers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.