Abstract

Development of plant protein-based mildly acidic beverages remains challenging as the pH range falls near the protein isoelectric point, destabilizing emulsions. To overcome this problem, it was hypothesized that complexation between plant proteins and polysaccharides could provide emulsion stability in this critical pH range. Four different polysaccharides (sugar beet pectin, gum Arabic (GA), guar gum, gellan gum) were mixed separately with pea protein isolate (PPI) in 1:1 ratio, and the critical pH values for the formation of soluble complexes were determined. Heating the mixture widened the optimal pH range for soluble complexation for pectin-PPI and GA-PPI below the isoelectric point, which was then used to prepare 5 wt% O/W emulsions with an aqueous phase containing 0.5 wt% biopolymers at pH 8.0 and pH 4.5. Emulsion stability was characterized using droplet size, charge, visual observation, microstructure, and accelerated gravitational separation. PPI-only emulsions were stable at pH 8.0 but extensively destabilized at pH 4.5. The GA-PPI emulsions showed high stability at pH 8.0; however, at pH 4.5, the soluble complexes failed to provide a stable emulsion due to extensive droplet aggregation and phase separation. The emulsion prepared with a co-soluble pectin-PPI mixture at pH 8.0 also showed droplet aggregation and phase separation. The most improved emulsion stability (smallest droplet size, no aggregation) was observed for the pectin-PPI soluble complex at pH 4.5. Findings from this study showed that soluble complexes could be obtained at the desired pH range depending on the polysaccharide sources, which can stabilize O/W emulsions even near the protein's isoelectric point.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call