Abstract
The miniaturization and integration of optoelectronic devices require progressive size reduction of active layers, resulting in less optical absorption and lower quantum efficiency. In this work, we demonstrate that introducing a metasurface made of hybrid organic-inorganic perovskite (HOIP) can significantly enhance broadband absorption and improve photon-to-electron conversion, which roots from exciting Mie resonances together with suppressing optical transmission. On the basis of the HOIP metasurface, a broadband photodetector has been fabricated where photocurrent boosts more than 10 times in the frequency ranging from ultraviolet to visible. The device response time is less than 5.1 μs at wavelengths 380, 532, and 710 nm, and the relevant 3 dB bandwidth is over 0.26 MHz. Moreover, this photodetector has been applied as a signal receiver for transmitting 2D color images in broadband optical communication. These results accentuate the practical applications of HOIP metasurfaces in novel optoelectronic devices for broadband optical communication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.