Abstract

Photoacoustic computed tomography (PACT) has recently emerged as an attractive imaging modality for functional brain imaging due to its rich optical absorption contrast, high spatial and temporal resolutions, and relatively deep penetration. However, a major hurdle in using PACT for the human brain is distortion of the signal due to the skull, which negatively affects the quality of the images. In this project, we aimed to improve transcranial PACT using a U-Net architecture that can minimize distortion from the skull. This numerical study utilized a large collection of blood vessel images obtained from an online database and a computed tomography (CT) scan of an ex vivo human skull. The synthetic photoacoustic radiofrequency data were generated using the open-source wave solver k-Wave. Comparing the images generated by deep learning with the ground truth images, we achieved an average structural similarity index of 0.874 and an average peak signal-to-noise ratio of 17.92 dB.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.