Abstract

Electron recombination in dye-sensitized solar cells (DSSCs) results in significant electron loss and performance degradation. However, the reduction of electron recombination via blocking layers in nanowire-based DSSCs has rarely been investigated. In this study, HfO2 or TiO2 blocking layers are deposited on nanowire surfaces via atomic layer deposition (ALD) to reduce electron recombination in nanowire-based DSSCs. The control cell consisting of ITO nanowires coated with a porous shell of TiO2 by TiCl4 treatment yields an efficiency of 2.82%. The efficiency increases dramatically to 5.38% upon the insertion of a 1.3 nm TiO2 compact layer between the nanowire surface and porous TiO2 shell. This efficiency enhancement implies that porous sol-gel coatings on nanowires (e.g., via TiCl4 treatment) result in significant electron recombination in nanowire-based DSSCs, while compact coatings formed by ALD are more advantageous because of their ability to act as a blocking layer. By comparing nanowire-based DSSCs with their nanoparticle-based counterparts, we find that the nanowire-based DSSCs suffer more severe electron recombination from ITO due to the much higher surface area exposed to the electrolyte. While the insertion of a high band gap compact layer of HfO2 between the interface of the conductive nanowire and TiO2 shell improves performance, a comparison of the cell performance between TiO2 and HfO2 compact layers indicates that charge collection is suppressed by the difference in energy states. Consequently, the use of high band gap materials at the interface of conductive nanowires and TiO2 is not recommended.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call