Abstract

One of the surface mining methods is open-pit mining, by which a pit is dug to extract ore or waste downwards from the earth’s surface. In the mining industry, one of the most significant difficulties is long-term production scheduling (LTPS) of the open-pit mines. Deterministic and uncertainty-based approaches are identified as the main strategies, which have been widely used to cope with this problem. Within the last few years, many researchers have highly considered a new computational type, which is less costly, i.e., meta-heuristic methods, so as to solve the mine design and production scheduling problem. Although the optimality of the final solution cannot be guaranteed, they are able to produce sufficiently good solutions with relatively less computational costs. In the present paper, two hybrid models between augmented Lagrangian relaxation (ALR) and a particle swarm optimization (PSO) and ALR and bat algorithm (BA) are suggested so that the LTPS problem is solved under the condition of grade uncertainty. It is suggested to carry out the ALR method on the LTPS problem to improve its performance and accelerate the convergence. Moreover, the Lagrangian coefficients are updated by using PSO and BA. The presented models have been compared with the outcomes of the ALR-genetic algorithm, the ALR-traditional sub-gradient method, and the conventional method without using the Lagrangian approach. The results indicated that the ALR is considered a more efficient approach which can solve a large-scale problem and make a valid solution. Hence, it is more effectual than the conventional method. Furthermore, the time and cost of computation are diminished by the proposed hybrid strategies. The CPU time using the ALR-BA method is about 7.4% higher than the ALR-PSO approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call