Abstract

A new approach using a multilayered feed forward neural network for pulse compression is presented. The 13 element Barker code was used as the signal code. In training this network, the extended Kalman filtering (EKF)-based learning algorithm which has faster convergence speed than the conventional backpropagation (BP) algorithm was used. This approach has yielded output peak signal to sidelobe ratios which are much superior to those obtained with the BP algorithm. Further, for use of this neural network for real time processing, parallel implementation of the EKF-based learning algorithm is indispensable. Therefore, parallel implementation has also been developed. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.