Abstract

This study presents clear and compelling experimental evidence for the significant beneficial effects of nitrogen-doping on the activity of Pt/C catalyst systems for the methanol oxidation reaction. This evidence is obtained through the deployment of geometrically well-defined model catalytic systems consisting of tunable assemblies of Pt catalyst nanoparticles deposited onto undoped, Ar-doped, and N-doped highly oriented pyrolytic graphite (HOPG) substrates. Both Ar- and N-doping were achieved via ion beam implantation, and Pt was electrodeposited from solutions of H2PtCl6 in aqueous HClO4. Morphology from scanning electron microscopy (SEM) and aqueous electrochemical analysis of catalytic activity was utilized to examine the effect of N-doping compared to the undoped and Ar-doped control samples. The results strongly support the theory that doping nitrogen into a graphite support significantly affects both the morphology and the behavior of the overlying Pt nanoparticles. In particular, nitrogen-doping was observed to cause a significant decrease in the average Pt nanoparticle size, an increase in the Pt nanoparticle dispersion, and a significant increase in catalytic activity and durability for methanol oxidation. The model catalytic systems demonstrated here represent a versatile platform to study catalyst-support interactions in electrocatalytically relevant nanoparticle systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.