Abstract

The task-based approach is a parallelization paradigm in which an algorithm is transformed into a direct acyclic graph of tasks: the vertices are computational elements extracted from the original algorithm and the edges are dependencies between those. During the execution, the management of the dependencies adds an overhead that can become significant when the computational cost of the tasks is low. A possibility to reduce the makespan is to aggregate the tasks to make them heavier, while having fewer of them, with the objective of mitigating the importance of the overhead. In this paper, we study an existing clustering/partitioning strategy to speed up the parallel execution of a task-based application. We provide two additional heuristics to this algorithm and perform an in-depth study on a large graph set. In addition, we propose a new model to estimate the execution duration and use it to choose the proper granularity. We show that this strategy allows speeding up a real numerical application by a factor of 7 on a multi-core system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.