Abstract

Pain management is a crucial part in Sickle Cell Disease treatment. Accurate pain assessment is the first stage in pain management. However, pain is a subjective response and hard to assess via objective approaches. In this paper, we proposed a system to map objective physiological measures to subjective self-reported pain scores using machine learning techniques. Using Multinomial Logistic Regression and data from 40 patients, we were able to predict patients' pain scores on an 11-point rating scale with an average accuracy of 0.578 at the intra-individual level, and an accuracy of 0.429 at the inter-individual level. With a condensed 4-point rating scale, the accuracy at the inter-individual level was further improved to 0.681. Overall, we presented a preliminary machine learning model that can predict pain scores in SCD patients with promising results. To our knowledge, such a system has not been proposed earlier within the SCD or pain domains by exploiting machine learning concepts within the clinical framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.