Abstract

Due to rapid urbanization around the world, high concentrations of vehicular pollutants have deteriorated the outdoor air quality, which can affect the physical and psychological well-being of humans. Numerous strategies have been proposed to overcome these harmful impacts by improving the dispersion of air pollutants. Consequently, a question arises regarding the potential effects of building morphology on the dispersion of pollutants. Subsequently, transient three-dimensional Computational Fluid Dynamics (CFD) simulations are performed to examine the effect of building morphology on PM10 dispersion. Eleven cases with various prototypes and morphological methods are compared with a simple building form to identify the patterns of PM10 dispersion within a given time sequence under a prevailing inflow condition. The results indicate that the different designs of building morphology with varying Relative compactness (RC) indicator highlight the importance of considering morphological factors to improve outdoor air quality. In addition, the proposed prototypes can reduce PM10 concentrations by approximately 30%–90% at specific points in the studied time sequence. In particular, the vertical, horizontal, and grid folded prototypes can be considered more effective as an approximate decrease between 70% and 90% in PM10 concentrations is observed, which reflects the influence of building morphology on improving outdoor air quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.