Abstract

Oriented object detection (OOD) can precisely detect objects with arbitrary direction in remote sensing images (RSIs). Up to now, the two-stage OOD methods have attracted more attention because of their high detection accuracy. However, the two-stage methods only rely on the features of each proposal for object recognition, which leads to the misclassification problem because of the intra-class diversity, inter-class similarity and clutter backgrounds in RSIs. To address the above problem, an OOD model combining scene classification is proposed. Considering the fact that each foreground object has a strong contextual relationship with the scene of the RSI, a scene classification branch is added to the baseline OOD model, and the scene classification result of input RSI is used to exclude the impossible categories. To focus on the hard instances and enhance the consistency between classification and regression, a task-aligned focal loss (TFL) which combines the classification difficulty with the regression loss is proposed, and TFL assigns lager weights to the hard instances and optimizes the classification and regression branches simultaneously. The ablation study proves the effectiveness of scene classification branch, TFL and their combination. The comparisons with 15 and 14 OOD methods on the DOTA and DIOR-R datasets validate the superiority of our method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call