Abstract

Considering that a mechanical part or component can be produced by varying process plans for specific manufacturing requirements, process optimization can be performed for some objectives, such as production quality, cost, and system reliability. The survival signature, as a reliability equivalence factor, is recently introduced to evaluate the performance reliability of a system. In this article, a survival signature–based process optimization approach is proposed to improve the operational reliability of the manufacturing process. First, a three-dimensional part model is analyzed for the identification of machining features, and the corresponding process strategies are made for creating them. Based on the feature process strategies and the current manufacturing resources, multi-process plans could be generated and a network is constructed, which illustrates the varying operation paths. Then the reliability distribution functions of the machines on the network are estimated by the failure data. Finally, the survival signatures of the network are computed and applied to measure the failure probabilities of all operation paths so that the optimal one could be selected. The feasibility and efficiency of the proposed approach have been demonstrated by a case study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.