Abstract

One-class collaborative filtering (OCCF) problems are vital in many applications of recommender systems, such as news and music recommendation, but suffers from sparsity issues and lacks negative examples. To address this problem, the state-of-the-arts assigned smaller weights to unobserved samples and performed low-rank approximation. However, the ground-truth ratings of unobserved samples are usually set to zero but ill-defined. In this paper, we propose a ranking-based implicit regularizer and provide a new general framework for OCCF, to avert the ground-truth ratings of unobserved samples. We then exploit it to regularize a ranking-based loss function and design efficient optimization algorithms to learn model parameters. Finally, we evaluate them on three realworld datasets. The results show that the proposed regularizer significantly improves ranking-based algorithms and that the proposed framework outperforms the state-of-the-art OCCF algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.